martes, 24 de septiembre de 2013

FRACTAL


La definición de fractal en los años 1970, dio unidad a una serie de ejemplos, algunos de los cuales se remontaban a un siglo atrás. A un objeto geométrico fractal se le atribuyen las siguientes características:
·         Es demasiado irregular para ser descrito en términos geométricos tradicionales.
·         Es autosimilar, su forma es hecha de copias más pequeñas de la misma figura.
Las copias son similares al todo: misma forma pero diferente tamaño. Ejemplos de autosimilaridad:
·         Fractales naturales, son objetos naturales que se pueden representar con muy buena aproximación mediante fractales matemáticos con autosimilaridad estadística. Los fractales encontrados en la naturaleza se diferencian de los fractales matemáticos porque los naturales son aproximados o estadísticos y su autosimilaridad se extiende sólo a un rango de escalas (por ejemplo a escala cercana a la atómica su estructura difiere de la estructura macroscópica).
·         Conjunto de Mandelbrot, es un fractal autosimilar, generado por el conjunto de puntos estables de órbita acotada bajo cierta transformación iterativa no lineal.
·         Paisajes fractales, este tipo de fractales generados computacionalmente pueden producir paisajes realistas convincentes.
·         Fractales de pinturas.-Se utilizan para realizar el proceso de decalcomania.
·        Su dimensión de Hausdorff-Besicovitch es estrictamente mayor que su dimensión topológica.
·        Se define mediante un simple algoritmo recursivo
No basta con una sola de estas características para definir un fractal. Por ejemplo, la recta real no se considera un fractal, pues a pesar de ser un objeto autosimilar carece del resto de características exigidas.
Un fractal natural es un elemento de la naturaleza que puede ser descrito mediante la geometría fractal. Las nubes, las montañas, el sistema circulatorio, las líneas costeras o los copos de nieve son fractales naturales. Esta representación es aproximada, pues las propiedades atribuidas a los objetos fractales ideales, como el detalle infinito, tienen límites en el mundo natural.
Un fractal es un objeto cuya estructura se repite a diferentes escalas. Es decir, por mucho que nos acerquemos o alejemos del objeto, observaremos siempre la misma estructura. De hecho, somos incapaces de afirmar a qué distancia nos encontramos del objecto, ya que siempre lo veremos de la misma forma.
Los ejemplos clásicos
Para encontrar los primeros ejemplos de fractales debemos remontarnos a finales del siglo XIX: en 1872 apareció la función de Weierstrass, cuyo grafo hoy en día consideraríamos fractal, como ejemplo de función continua pero no diferenciable en ningún punto.
Posteriormente aparecieron ejemplos con propiedades similares pero una definición más geométrica. Dichos ejemplos podían construirse partiendo de una figura inicial (semilla), a la que se aplicaban una serie de construcciones geométricas sencillas. La serie de figuras obtenidas se aproximaba a una figura límite que correspondía al que hoy llamamos conjunto fractal. Así, en 1904Helge von Koch definió una curva con propiedades similares a la de Weierstrass: el copo de nieve de Koch. En 1915Waclaw Sierpinski construyó su triángulo y, un año después, su alfombra.



No hay comentarios:

Publicar un comentario